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On the Numericai Solution of Two- 

Elasticity Problems 

An itcrativc method is presented for solvin g plane strain and plane stress probiems 
for homogeneous and isotropic elastic materials. Displacements or samt: combinaiior 
of dispkements and stresses are prescribed on the boundary of the elastic solid. The 
irerares ,ue evaluated numerically by difference methods. Tiie direct biock factor;ng 
method is used to solve the resulting system of algebraic equatiorts. App!ications LO 
spcific problems are given. A proof of the convergenr~ r~f ;he analytic I:era:ions 15 
given for problems where the displacements are speciEed on the entire bowdarp. 

We present an iterative method for solving piane stress and plane strain pro~bltx~s 

for homogeneous isotropic elastic materials. We consider a bounded region D in 
the X, J plane? which may be multiply connected. T’hz ‘boundary of 17 is c&noted 
by B. The arc length along B is s and the outward unit normal and tangent vectors 
to 23 are n(sj = (q , 1~) and t(s) = (t ,. ) j,), respectively. Str.esses and/or disp’iace- 
ments are prescribed on the boundary R of the elastic body. We wish to determine 
the resulting displacements and stresses in the iiitericr. 

The biharmonk hounctary value problerii;: 

is the conventional mathematical formulation of plane strain and p&ne stress 
problems if only stresses are prescribed on &. Bn (I. i) B is the two sliinelisicrial 

Lapiacian, 4 is the Airy stress function and p7 i; and g are prescribed fj3nction.s that 
are determined by the applied forces. 

In this paper we shall consider plane stress and piane strain problems where ~he 

displacem.ents or some mixture of displacements and stresses are specified on B. 
For these problems: the formulation (1.1 j may be awlz~ard. Then it is convcnLent 
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to employ the displacement formulation of plane stress and plane strain. Thus we 
consider the displacement vector u(x, v) = [u(x, JT), z(x, JJ)]. The displacement 
equations of equilibrium are 

Au = k(u, - v& ) 

where k is defined by 

do = -k(u, - ox), (1.2a) 

2k = f ;l~v;j-l, for plane stress, 
for plane strain, 

(1.2b) 

and v is Poisson’s ratio. The boundary conditions are that at each point of B either 
the normal displacement or the normal stress and either the tangential displacement 
or the tangential stress are prescribed. That is, 

and 

either n * u = D,(s) or TijlZilZj = N(S), (1.2c) 

either t * u = D,(s) or TijtilZj = T(S), (1.2d) 

are prescribed at each point of B. The stresses 7ij = (T, , 7y , Tzu) are related to the 
displacement gradients by Hooke’s law, 

where E is Young’s modulus and CL and p are defined by [ E 
m--v ' 1 for plane stress, 

[%Pl = 
[ 

(1.3b) 
for plane strain. 

We shall assume, in all the problems that we consider, that there is an arc of B 
on which either D, and/or Dt are prescribed. If N and T were prescribed on all of B, 
then we would employ the formulation (1.1). Prescribing D, and Dt on an arc 
B, of B is equivalent to prescribing u on B, . If B, = B, then we call (1.2) the 
elasticity Dirichlet problem. If B., + B, then we call (1.2) a mixed problem. 

Problem (1.1) is also the conventional mathematical formulation of the classical 
Lagrange-Kirchhoff small deflection theory of plates where 4 is the displacement 
of the plate perpendicular to the midplane. The boundary conditions (1.1 b) imply 
that the displacement and slope are specified on the edge of the plate. The formu- 
lation (1.1) may be inconvenient for numerical computations for other boundary 
conditions, such as specifying the moment and shear force on the edge. Southwell 
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[I] has introduced an alternative formulation of the Lagrange-Kirchhoff theory In 
which ti and 2’ are “‘moment potentials” that satisfy (1.2a) with k = (1 - v),‘(i -+ vj. 
The moment and shear boundary conditions are then equivaknt to specifying u 
and o on B. Thus the method presented in this paper is applicab!e to a class of $ate 
bending problems (see e.g. 121). 

We obtain approximate solutions of (1,2) by an accelerated iteration method. 
Each iterate is the solution of a boundary value probiem for Poisson’s equation. 
The iterates are then approximated by solving the Poisson boundary value probkm 
numerically. We establish the convergence of the iterates x tie solution of (i.2) 
for the elasticity Dirichlet problem. Applications of the method to Dirichiet. an.d 
mixed problems are described in Section 4. The numerical results suggest that the 
iterations converge for mixed problems. 

Special appikations of the method are given in [2-41. The method is related to 
the iterative procedures previously used for the numerical solution of nonlinear 
plate and shell problems (see e.g. [5] and references given therem). 

2. THE ITERATIVE METHOD 

We shah describe the iterative method for the elasticity irichlet problem. 
Typical modifications that are necessary to treat mixed problems are discussed in. 
Section 4. Thus we wish to solve (1.2a) subject to the boundary conditions, 

u(x, y) = f(s), for x, y on pa, (2.1; 

where f is a prescribed vector function. 
Starting from an initial estimate u@(x, y) of the solution, we dehne a sequence of 

iterates M”(x, y‘, by the recursions, 

L&i” = kjzry - Lp), ) 

Ll cn = --k(u;-” - L$-l)z ) for X, J! in Ds j%.2a) 

iiqx, y) = f(s), for s, y Grl B, !2.2b: 1 
n’” zzz &in + (1 - Q) @--1, for x, 3’ i:-! D. (2,2cj 

In (22j, I” is a provisional iterate and the number d is the acceleration parameter. 
If ff = I, then (2.2) are simple iterations. 

Each iterate in (2.2) is the solution of the Poisson boundary value problem? 

Llrv = H(x, J’), for x, 4’ in D, 

1v = F(s), for X, 4’ on R. $3) 

At each step of the iterations H and F are determined from the previous iterates 
and the data. 



24 BAUER AND REISS 

We now show that the simple iterations converge for sufficiently smooth data. 
Applications of the method, some of which are described in Section 4, show that 
the rate of convergence can be improved considerably by choosing other values of 8. 
We use the conventional notation C ,+,(D) for the space of functions defined on D 
whose mth derivatives are Holder continuous with positive exponent QI < 1 in 
D + B. We require that the boundary B and the boundary data f are sufficiently 
smooth so that, the elasticity Dirichlet problem and (2.3) have unique solutions, 
the iterations (2.2) are defined and the divergence theorem is applicable to D. Thus 
we assume that: B is of class Cz+or ; the initial iterate belongs to C,+,(D); f is con- 
tinuous and df/ds ispiecewise continuous. It follows from the existence and regularity 
theory for second order strongly elliptic equations, that the iterations (2.2) are 
defined under the above conditions [6]. The results of this section can also be 
established with weaker restrictions. 

If II is the solution of the elasticity Dirichlet problem, we define U(X, y) = 
I: ox, Y>, WG u>l by 

Then we conclude from (1.2a), (2.1), and (2.2) that Um is a solution of 

Au” = kW’;-l, 

A v” = -k W;-l, 

U”= 0, for s, y on B, 

where wl(x, y) is defined by 

We shall denote the L2 norm by 11 I/, i.e., 

11 z(x, y)ll” = j j z’ dx dy. 

(2.5a) 

(2.5b) 

(2.k) 

(2.5d) 

(2.6) 

In (2.6), and throughout this section, the integration is over the region D. Our 
convergence result is stated in the following theorem. 

THEOREM. U” and its $rst partial derivatives converge to zero in the L, nom 
asn+ ~2. 
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Prooj We multiply (2.5a) by u” and (2.5b) by VW and add the resulting 
equations, Then we use Green’s theorem and (2.5~) This ~klds, 

into the right side of (2.7). Then by applying the divergence theorem to the result 
and using (2.5x), we obtain 

We estimate the right side cjf (2.8) by observing that 

The last integral on the right side vanishes because of (2.56). Thus (2.9) is reduced to 

J-s (W”j” dx dy < Z,;*. (2: i0) 

We now apply Schwarz’s inequality to the right side of (2.8) an 
in the result. This gives, 

Zn2 < kZ,Z,-, . C&i 1? ‘$ 1 “\ 

Since v must be in the interval 0 < v < 4, (1.2b) implies that k < I for both plane 
strain and plane stress problems. Thus we conclude from (2,11) that 

f;+c z, = 0. (2.r2) 

It follows from (2.12) and (2.7) that the L, norms of the first partial derivatives csi’ 
UT” and VT2 converge to zero as II --t KJ. 

To complete the proof, we use PoincarC’s inequality. Thus there is a constant 
C > 0 such that for any g(x, ~7) E C,(D), 
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Since the norms of the first partial derivatives of U” and Y,’ converge to zero, we 
conclude by inserting g = U’” and g = V” in (2.13) that 

which establishes the theorem. 
Thus the iterates that are defined by (2.2) and their first derivatives converge in 

the L9 norm to the solution of the elasticity Dirichlet problem. The numerical 
results presented in Section 4 suggest that the theorem is valid for mixed problems. 
However, we have not yet been able to prove this result. By suitable modifications 
in the proof of the theorem, we can establish a constructive existence theorem for 
elasticity Dirichlet problems in two and three dimensions. 

3. N~IERICAL METHODS 

We evaluate the iterates in (2.2) by obtaining numerical solutions of the boundary 
value problem (2.3). Conventional finite difference approximations of (2.3) or the 
finite element method yield a system of algebraic equations 

Mw=r. (3.1) 

The vector w  is obtained by appropriately ordering the elements of the mesh 
function wij (or the nodal displacements) that approximate the solution M(.Q , yj) of 
(2.3) on the mesh (or at the nodes). For each step of the iteration procedure F is a 
known vector that is determined by the data and the previous iterates. 

If the standard five point or nine point difference approximations of the Laplacian 
are used, then the matrix M is of the block tridiagonal form, 

M = [Ai , Bi , Ci] 

i 

Bl Cl 0 - - - 0 
A2BzCz0 . . 0 
0 A, B, C, 0 . 0 = :o.. . 
0 . . . 0 4-1 Be, G-1 
0 . . . 0 4 4 

2 (3.2) 

where Ai , Bi , Ci are matrices. Each of the diagonal matrices Bi are square. The 
dimensions of the other matrices in (3.2) are consistent with the indicated parti- 
tioning. The algebraic equations that are obtained from other difference approxi- 
mations or the finite element method may also be of block diagonal form with 
possibly a larger number of bands. 
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A fast method must be used to solve (3.1) because we wish to solve large systems 
and many iterations may be required for convergence. We employed either tha 
five or the nine point difference approximations to the Laplacian in all the problems 
studied. Then the matrix M is of block tridiagonal form. We used the direct block 
factoring method 171 to solve (3.1). 

In this method the matrix A4 is factored into the product of an upper Ho& 
triangular matrix U and a lower block triangular matrix L. That is, 

M=LU, 

where, using the notation given in (3.2), .E and U are defined by 

g.3) 

L = [A/., pi ) 01, 

u = [O, I,- - y:]. :3./g; . . , 

In (3.4) 1i are unit matrices of the same dimension as Bi , and ,Bi and yi are matrices 
that are defined for i = 1, 2,..., 4, by 

where we denne y,, = 0. Then by using (3.3); the system (3.lj is equivalen-t to the 
two systems, 

The systems (3.6) and (3.7) are of block triangular form. Therefore they can be 
solved directly. First we partition r, v and w into subvectors to conform with the 
partitioning of L and U. Then the solutions of (3.6) and (3.7) are recursively 
given by 

vi = pi’(ri - &vi-,), !‘I= 1,: -i*.‘) 4, 
(3.8) 

WI = vi - yiwi+1 ) i = qy q -- I,.,,, i. 

Thus the matrices Ai ) yi , /Ii1 are needed to evaluate the solution of (3.1) by 
the formulas (3.8). The submatrices Ai , Bi and Ci are usually sparse. FLowever 
for i > 1, pi and yi are not sparse. The inverses ,Q1 are evaluated by Gauss elimina- 
tion with pivotal condensation. Since M does not change from step to step in shf; 
iteration procedure, the /3;” and yi matrices are computed only once. They are 
stored in the fast access memory of the computer to achieve greater speed of 
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computation. However, this storage limits the size of the algebraic systems that we 
can consider. The maximum size that we used in our computations was approxi- 
mately 1200 equations, although slightly larger systems can be accommodated. 
If auxiliary memory devices, such as tapes and discs are employed, then significantly 
larger systems can be treated but the speed of computation is then seriously reduced. 
The advantages of this method are its speed, once the factoring is completed, and 
its applicability to a variety of domains.l 

For rectangular or simple regions composed of parallel rectangles, block reduc- 
tion and fast Fourier transform methods, e.g. [8, 91, may be applicable. Then the 
size of the fast access storage is significantly reduced and more refined meshes can 
be used. For the mesh sizes that we used (approximately 600-1200 points), the 
factoring and fast Fourier methods are comparable in speed. 

If M is of block five diagonal form, then the factoring and block reduction 
method presented in [IO] can be employed to solve (3.1). 

The following numerical convergence criterion was employed, 

(3.9) 

In most of our calculations we used a = 8. Only small changes in the answers 
occurred when larger values of a were employed. The number of iterations that 
are required to satisfy (3.9) depends on the domain, the boundary conditions, the 
mesh width and the value of 8. 

When the numerical iterations satisfied the convergence criterion (3.9), numerical 
approximations to the stresses at each point of the mesh were computed from 
difference approximations to (1.3a). 

4. APPLICATIONS OF THE METHOD 

The method was applied to a variety of problems. Dirichlet and mixed problems 
were considered. We shall briefly describe some of the numerical results for four 
of the problems that we studied. In each problem D is the unit square. 
The boundary conditions are summarized in Column 2 of Table I. In Table I, 
A and p are defined by 

4~) = 4~0 - u>, 
E 

p = 2(1 + V) . (4.1) 

More general polygonal regions and regions with curved boundaries were also 
considered (see e.g. [2,4]). 

1 If the domain or the coefficients in (1.2a) vary, then the size and elements of the blocks in the 
corresponding matrix M will vary. 
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Problems I and II are Dirichlet problems. Since Problems III and IV are mixed 
problems, it is necessary to modify the iteration procedure (2.2) for them. We 
observe that T+, is given by (1.3). Therefore, we replace the boundary condition 
(2.2b) on 4’ = 0, 1 for Problem III by 

2 = 0, cyn = +;- = 0. 

Similarly, for Problem IV, the boundary conditions for the iteration method are 

zln = 0, c, 72 = -Un-l II + 4.Y) = 4 x = 0, 1, 

v’” 
(4.3) 

Ezz 0 3 I,, Y 11, = 0 y = 0, 1. 

For more complicated mixed problems, the modified iteration procedures require 
iteration in the boundary conditions. 

In all the problems we used u = 0.32 and the plane stress values for 01, /?, and k, 
see (1.2b) and (1.3b). Furthermore we used 

uo G 0 and 6 = l/26 (4.4) 

in all the computations where 6 is the mesh width in the difference approximation. 
Finer meshes can be accommodated with our method. For a mesh with 6 = l/26 

we determined the unit time T for a single iteration on the CDC 6600 computer as 
T = 0.206 sec. 

We wish to select the acceleration parameter 0 in (2.2) so as to minimize the 
number of iterations necessary to satisfy (3.9). We denote these optimum values 
as 8, . Estimates of 0, were obtained from numerical experiments. The results are 
given in the third column of Table I. The values of Bc depend upon the domain D 
and the type of boundary conditions. In Column 4 of Table I we list the number N 
of iterations that are required to satisfy (3.9) with the values of l3 given in Column 3. 
The total iteration time required to solve each problem is equal to TN a .2N. We 
observe that N increases significantly as the arc of the boundary on which u is 
prescribed decreases. The iterations converge in each case with 8 = 1. For example, 
for Problem I, 31 iterations were required for convergence with 0 = 1 and for 
Problem III, approximately 250 iterations were required with 0 = 1. The number 
of iterations necessary for convergence can be reduced by taking more accurate 
initial iterates u” and by decreasing the value of a in (3.9). 

In Fig. 1, we present computer drawn sketches of the numerically determined 
displacements and stresses for each of the problems. 

For v = 0.32, the plane stress value of k as given by (1.2b) is k = 0.66. Since 31 
iterations were required for Problem I with 0 = 1, the convergence rate in the 
L, norm is, see (2.1 l), k31 .w (0.66)“l w lo-“-‘j. This is reasonably close to the 
convergence criterion of 1O-s, see (3.9) which is essentially in the maximum norm. 



- 

x 

FIG. 1. Displacements and stresses for Problems 1-X. 
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Poisson’s ratio is in the range, 0 < v < $. For v = +, the elastic material is 
incompressible and the formulation must be modified. For v = 4 we have from 
(1.2b) 

k = 5314, for plane stress, 
11, for plane strain. 

The analysis in Section 2 shows that the iterations converge with 0 = 1 for all v in 
0 < v < +. Since k(v) is a monotone increasing function, the analysis suggests 
that the number of iterations required for convergence increases as v + 8. We 
solved Problem I with v = 0.499. Thirty one iterations were required for con- 
vergence for the plane stress problem. For the plane strain problem, k(0.499) = 
0.998 and it was possible to satisfy (3.9) with a = 6 after 625 iterations. Presumably 
many more iterations are necessary to satisfy (3.9) with a = 8. 

5. CONCLUDING REMARKS 

A variety of other iteration procedures can be defined for (1.2). For example, 
we can rewrite (1.2a) and hence (2.2a) as 

Au” = -k,(zly + z:;-l)t ) Ai;” = -k&;-l + ?lyn--1)21, (5-l) 

where k, is defined by 

((1 + Ml - 4, k, _ 
1 k Ic - {l/(1 - 2v), 

for plane stress, 
for plane strain. 

Since k,(v) is a monotonically increasing function and k,(O) = 1, the analysis in 
Section 2 suggests that the simple iterations in (5.1) may diverge. This was con- 
firmed by numerical experiments. However convergence was obtained with 
appropriate values of 8. The convergence of the iterations (2.2) was always faster 
than the iterations (5.1). 

A finite element formulation proposed by Rashid [I 11 is equivalent to the 
iterations 

AP - kii& = -kv,“,‘, Ai? - ko;, = -ku;;‘. (5.2) 

In the elasticity Dirichlet problem the submatrices in M corresponding to the first 
and second equations in (5.2) are different. This increases the storage requirement. 
Furthermore the matrix M and its factors L and U must be recomputed for each 
choice of v because k depends on v. 
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